亚搏手机版APP下载_G.1

张毅教授

作者: 时间:2021-06-07 点击数:

硕士研究生指导教师简介

姓    名

张毅

18CB3


性    别

出生年月

19644

最高学历、学位

博士研究生、理学博士

职    称

教授(二级)

职    务


电子邮箱

zhy@mail.usts.edu.cn


个人简介


一、基本情况

张毅,男,1964年生,博士,教授,博士生导师。1983年毕业于东南大学力学专业,获理学学士学位;1988年毕业于东南大学一般力学专业,获工学硕士学位;1998年毕业于北京理工大学应用数学专业,获理学博士学位。2000年晋升教授2010年晋升二级教授。曾担任苏州科技大学副校长2006-2017)中国力学学会理事、动力学与控制专业委员会分析力学专业组组长,江苏省力学学会副理事长、动力学与控制专业委员会副主任委员,苏州市力学学会理事长等。曾担任教育部首届高等学校力学教学指导委员会非力学类专业力学基础课程教学指导分委员会委员。曾被授予江苏省劳动模范、江苏省师德模范、苏州市劳动模范、苏州市十大杰出青年等荣誉称号。获“江苏力学奖”,江苏省首届“十佳研究生导师”提名奖。被遴选为江苏省“333高层次人才培养工程”首批中青年科学技术带头人、江苏省普通高校新世纪学术带头人培养人选等。


二、主要研究领域及学术成就

长期从事工程力学和应用数学领域的教学和科研工作。主要研究方向分析力学;非完整力学;伯克霍夫力学;力学系统的对称性与守恒量;分数阶变分问题与对称性;时间尺度变分问题与对称性等。近年来主持国家自然科学基金面上项目4项、江苏省自然科学基金面上项目1项,在Nonlinear Dyn.,Int. J. Non-Linear Mech.J. Vib. Control,Acta Mech.J. Math. Phys.,Commun. Nonlinear Sci. Numer. Simulat.Int. J. Theor. Phys.,Fract. Calc. Appl. Anal. Acta Mech. Sin.Theor. Appl. Mech. Lett.Chin. Phys. B Commun. Theor. Phys.《中国科学》,《力学学报》,《物理学报》等国内外重要学术期刊以第一作者或通讯作者发表学术论文300余篇,其中140余篇论文被SCI检索,100余篇论文被EI检索。已指导博士生4人,获校优秀博士学位论文2篇;已指导的26名硕士生中,获江苏省优秀硕士学位论文3篇,校优秀硕士学位论文9篇,4人考取博士研究生,3人获华为杯全国研究生数学建模竞赛二等奖,多人荣获校优秀共产党员校优秀研究生校优秀研究生干部等荣誉称号,多人荣获国家奖学金


三、代表性科研成果

[1] Yi Zhang*. Adiabatic invariants and Lie symmetries on time scales for nonholonomic systems of non-Chetaev type. Acta Mechanica, 2020, 231(1): 293-303.

[2] 张毅*. 线性动力学方程的Noether准对称性与近似Noether守恒量. 力学学报, 2020, 52(6): 1765-1773.

[3] Lin-Jie Zhang, Yi Zhang*. Non-standard Birkhoffian dynamics and its Noether's theorems. Communications in Nonlinear Science and Numerical Simulation, 2020, 91: 105435.

[4] Xin-Xin Xu, Yi Zhang*. Adiabatic invariants for disturbed fractional Hamiltonian system in terms of Herglotz differential variational principle. Acta Mechanica, 2020, 231(12): 4881-4890.

[5] Ying Zhou, Yi Zhang*. Noether symmetries for fractional generalized Birkhoffian systems in terms of classical and combined Caputo derivatives. Acta Mechanica, 2020, 231(7): 3017-3029.

[6] Сюэ Тянь, И Чжан*. Адиабатические инварианты типа Герглотца для возмущенных неконсервативных Лагранжевых систем. Теоретическая И Математическая Физика, 2020, 202(1): 143-154

[7] Juan-Juan Ding, Yi Zhang*. Noether's theorem for fractional Birkhoffian system of Herglotz type with time delay. Chaos, Solitions and Fractals, 2020, 138: 109913.

[8] Jing Song, Yi Zhang*.Routh method of reduction for dynamical systems with nonstandard Lagrangians on time scales. Indian Journal of Physics, 2020, 94(4): 501-506.

[9] Yi Zhang*, Xiang-Hua Zhai. Perturbation to Lie symmetry and adiabatic invariants for BirkhoffIan systems on time scales. Communications in Nonlinear Science and Numerical Simulation, 2019, 75: 251-261.

[10] Yi Zhang*, Xue Tian. Conservation laws of nonholonomic nonconservative system based on Herglotz variational problems. Physics Letters A, 2019, 383: 691-696.

[11] Yi Zhang*. Lie symmetry and invariants for a generalized Birkhoffian system on time scales. Chaos, Solitons and Fractals, 2019, 128: 306-312.

[12] Yi Zhang*. Generalized canonical transformation for second-order BirkhoffIan systems on time scales. Theoretical & Applied Mechanics Letters, 2019, 9: 353-357.

[13] Xiang-Hua Zhai, Yi Zhang*. Lie symmetry analysis on time scales and its application on mechanical systems. Journal of Vibration and Control, 2019, 25(3): 581-592.

[14] Xue Tian, Yi Zhang*. Noether’s theorem for fractional Herglotz variational principle in phase space. Chaos, Solitions and Fractals, 2019, 119: 50-54.

[15] Xiang-Hua Zhai, Yi Zhang*. Mei symmetry of time-scales Euler-Lagrange equations and its relation to Noether symmetry. Acta Physica Polonica A, 2019, 136(3): 439-443.

[16] Xue Tian, Yi Zhang*. Time-scales Herglotz type Noether theorem for delta derivatives of Birkhoffian systems. Royal Society Open Science, 2019, 6 (11): 191248.

[17] Yi Zhang*, Xue-Ping Wang. Lie symmetry perturbation and adiabatic invariants for dynamical system with non-standard Lagrangians. International Journal of Non-Linear Mechanics, 2018, 105: 165-172.

[18] Yi Zhang*. Noether’s theorem for a time-delayed Birkhoffian system of Herglotz type. International Journal of Non-Linear Mechanics, 2018, 101: 36-43.

[19] Chuan-Jing Song, Yi Zhang*. Noether symmetry and conserved quantity for fractional Birkhoffian mechanics and its applications. Fractional Calculus & Applied Analysis, 2018, 21(2): 509-526.

[20] Xue Tian, Yi Zhang*. Noethers theorem and its inverse of Birkhoffian system in event space based on Herglotz variational problem. International Journal of Theoretical Physics, 2018, 57(3): 887-897.

[21] Xue Tian, Yi Zhang*. Noether symmetry and conserved quantity for Hamiltonian system of Herglotz type on time scales. Acta Mechanica, 2018, 229(9): 3601-3611.

[22] Yi Zhang*. Variational problem of Herglotz type for Birkhoffian system and its Noether's theorem. Acta Mechanica, 2017, 228(4): 1481-1492.

[23] Xiang-Hua Zhai, Yi Zhang*. Noether theorem for non-conservative systems with time delay on time scales. Communications in Nonlinear Science and Numerical Simulation, 2017, 52: 32-43.

[24] Chuan-Jing Song, Yi Zhang*. Conserved quantities for Hamiltonian systems on time scales. Applied Mathematics and Computation, 2017, 313: 24-36.

[25] Chuan-Jing Song, Yi Zhang*. Conserved quantities and adiabatic invariants for fractional generalized Birkhoffian systems. International Journal of Non-Linear Mechanics, 2017, 90: 32-38.

[26] Yi Zhang*, Xiao-San Zhou. Noether theorem and its inverse for nonlinear dynamical systems with nonstandard Lagrangians. Nonlinear Dynamics, 2016, 84(4): 1867-1876.

[27] 张毅*. 相空间中非守系Herglotz广义变分原理及其Noether定理. 力学学报, 2016, 48(6): 1382-1389.

[28] Xiang-Hua Zhai, Yi Zhang*. Noether symmetries and conserved quantities for fractional Birkhoffian systems with time delay. Communications in Nonlinear Science and Numerical Simulation, 2016, 36: 81-97.

[29] Bin Yan, Yi Zhang*. Noether’s theorem for fractional Birkhoffian systems of variable order. Acta Mechanica, 2016, 227(9): 2439-2449.

[30] Yi Zhang*, Xiang-Hua Zhai. Noether symmetries and conserved quantities for fractional Birkhoffian systems. Nonlinear Dynamics, 2015, 81(1-2): 469-480.

[31] Chuan-Jing Song, Yi Zhang*. Noether theorem for Birkhoffian systems on time scales. Journal of Mathematical Physics, 2015, 56(10): 102701.

[32] Shi-Xin Jin, Yi Zhang*. Noether theorem for non-conservative Lagrange systems with time delay based on fractional model. Nonlinear Dynamics, 2015, 79(2): 1169-1183.

[33] Xiang-Hua Zhai, Yi Zhang*. Noether symmetries and conserved quantities for Birkhoffian systems with time delay. Nonlinear Dynamics, 2014, 77(1-2): 73-86.

[34] Zi-Xuan Long, Yi Zhang*. Fractional Noether theorem based on extended exponentially fractional integral. International Journal of Theoretical Physics, 2014, 53(3): 841-855.

[35] Ju Chen, Yi Zhang*. Perturbation to Noether symmetries and adiabatic invariants for disturbed Hamiltonian systems based on El-Nabulsi nonconservative dynamics model. Nonlinear Dynamics, 2014, 77(1-2): 353-360.

[36] Yi Zhang*, Yan Zhou. Symmetries and conserved quantities for fractional action-like Pfaffian variational problems. Nonlinear Dynamics, 2013, 73(1-2): 783-793.

[37] 张毅*. 非保守动力学系统Noether对称性的摄动与绝热不变量. 物理学报, 2013, 62(16): 164501.

[38] 张毅*, 金世欣. 含时滞的非保守系统动力学的Noether理论. 物理学报, 2013, 62(23): 234502.

[39] Yi Zhang*. Fractional differential equations of motion in terms of combined Riemann- Liouville derivatives. Chinese Physics B, 2012, 21(8): 084502.

[40] Yi Zhang*. The method of variation of parameters for integration of a generalized Birkhoffian system. Acta Mechanica Sinica, 2011, 27(6): 1059–1064

[41] Yi Zhang*. The method of Jacobi Last Multiplier for integrating nonholonomic systems. Acta Physica Polonica A, 2011, 120(3): 443-446.

[42] 张毅*. 非完整力学系统的Hamilton对称. 中国科学: 物理学 力学 天文学, 2010, 40(9): 1130-1137.

[43] Yi Zhang*. Stability of manifold of equilibrium states for nonholonomic systems in relative motion. Chinese Physics Letters, 2009, 26 (12): 120305

[44] Yi Zhang*. Hojman conserved quantities for Birkhoffian systems in the event space. Communications in Theoretical Physics, 2008, 50(1): 59-62.

[45] Yi Zhang*, Feng-Xiang Mei. A geometric framework for time-dependent mechanical systems with unilateral constraints. Chinese Physics, 2006, 15(1): 13-18

[46] Yi Zhang*. Conservation laws for mechanical systems with unilateral holonomic constraints. Progress in Natural Science, 2004, 14(1): 55-59.

[47] 张毅*. Birkhoff系统的一类Lie对称性守恒量. 物理学报, 2002, 51(3): 461-464.

[48] Yi Zhang*, Feng-Xiang Mei. A differential geometric description for time-independent Chetaev’s non-holonomic mechanical system with unilateral constraints. Acta Mechanica Solida Sinica, 2002, 15(1): 62-67.

[49] Yi Zhang*, Mei Shang, Feng-Xiang Mei. Symmetries and conserved quantities for systems of generalized classical mechanics. Chinese Physics, 2000, 9(6): 401-407.

[50] Yi Zhang*, Feng-Xiang Mei. Lie symmetries of mechanical systems with unilateral holonomic constraints. Chinese Science Bulletin, 2000, 45(15): 1354-1358.


建设单位:苏州科技大学

地址:江苏省苏州市虎丘区滨河路1701号

手机版